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Abstract 

Current projections and unprecedented storm activity to date suggest the 2020 Atlantic hurricane season 
will be extremely active and that a major hurricane could make landfall during the global COVID-19 
pandemic. Such an event would necessitate a large-scale evacuation, with implications for the trajectory 
of the pandemic. Here we model how a hypothetical hurricane evacuation from four counties in southeast 
Florida would affect COVID-19 case levels. We find that hurricane evacuation increases the total number 
of COVID-19 cases in both origin and destination locations; however, if transmission rates in destination 
counties can be kept from rising during evacuation, excess evacuation-induced case numbers can be 
minimized by directing evacuees to counties experiencing lower COVID-19 transmission rates. 
Ultimately, the number of excess COVID-19 cases produced by the evacuation depends on the ability of 
destination counties to meet evacuee needs while minimizing virus exposure through public health 
directives.   

Introduction 

The combination of the COVID-19 pandemic, existing racial and socioeconomic inequalities, and 
environmental stressors exacerbated by climate change is exposing the many ways in which “compound 
risks” threaten human lives and wellbeing while straining the ability of governments at all scales to limit 
the damage from any one threat on its own1. Intersections of climate extremes with the pandemic—recent 
widespread flooding in South Asia at a time of rapidly increasing COVID-19 caseloads, for example—
have made clear that the consequences of such compound risk events can be lethal, though the 
underreporting of cases around the world2 and widely varying testing capabilities3 make it difficult to 
accurately quantify their magnitude.  

With the anticipated peak of the 2020 Atlantic hurricane season approaching and COVID-19 cases 
widespread and abundant in many hurricane-prone areas of the United States, the nation is poised to 
experience the collision of two major disasters. This study therefore addresses how decision-making 
around one key aspect of hurricane response—evacuation—could influence the trajectory of the pandemic 
in the US and be optimized to limit excess COVID-19 cases. With future global warming expected to 
continue the observed trend toward increasingly intense Atlantic hurricanes4,5, understanding how to 
manage and minimize the impact of the combined risks associated with a major hurricane and a global 
pandemic could prove critical both later this year and in the long-term as the risks of such simultaneous 
disasters increase around the world. 

Efficient, effective evacuations—whether voluntary or mandatory—are a critical component of ensuring 
public safety during natural disasters. The scale of recent evacuations from US Southeast and Gulf Coast 
states has been large: During Hurricanes Matthew (2016), Irma (2017), and Dorian (2019), for example, 
roughly 2.5, 6.5, and 1.1 million people, respectively, were under evacuation orders 6–8. By changing the 
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distribution of people for days or weeks, a large-scale evacuation amid a pandemic has the potential to 
alter the trajectory and geographic distribution of infections. And by temporarily relocating from their 
own homes into potentially shared living arrangements where levels of social contact are higher, evacuees 
may experience greater transmission risk both during and after an evacuation. 

This analysis evaluates how a large-scale evacuation of the southeast Florida coast from a hypothetical 
Category 3 hurricane would affect the total number of COVID-19 cases and their spatial distribution in 
evacuees’ origin and destination counties. This is accomplished by first building a hypothetical hurricane 
evacuation scenario from previously published studies of evacuation behavior in the southeast US region. 
We then use a simple, two-county infectious disease model to identify the most relevant evacuation and 
epidemiological characteristics influencing COVID-19 case counts. The findings from the these 
simulations are used to inform experiments with a larger metapopulation model representing SARS-CoV-
2 transmission in all 3,142 US counties9, as well as various evacuation scenarios. 

RESULTS 

Identifying key parameters using a two-county model 

We used a simplified, two-county metapopulation model, representing a generic pair of origin and 
destination counties, to determine the factors that have greatest influence on COVID-19 case numbers 
(Methods; Figure 1a). Specifically, we evaluated the effects of six evacuation and epidemiological 
characteristics on COVID-19 case numbers: transmission rates in origin and destination counties 
(quantified by the effective reproductive number, 𝑅௘), the fraction of the origin county population that 
evacuates (𝑝௘௩௔), the duration of the evacuation period (𝑇௘௩௔), and daily case numbers in the origin and 
destination counties (𝑐𝑎𝑠𝑒௢௥௜ and 𝑐𝑎𝑠𝑒ௗ௘௦௧). We simulated an evacuation by moving a fraction of the 
population from the origin to the destination county. Evacuees then mixed with the population of the 
destination county, before returning home. This simulation was repeated using different combinations of 
each of the six characteristics in order to determine the effects of each on COVID-19 case numbers during 
and following the evacuation. 

We found that transmission rates in the origin and destination counties were the primary determinant of 
case numbers  (Methods; Figure 1b): evacuating individuals from a high-𝑅௘ origin to a low-𝑅௘ destination 
produced fewer additional cases in the origin county and in the origin and destination county combined. 
For the destination county alone, it was preferable to accept evacuees from a low-𝑅௘ origin. However, in 
a real hurricane landing, the counties that require evacuation are determined by the path of the hurricane, 
i.e. a low-𝑅௘ origin cannot be stipulated. The length of evacuation and the number of people evacuating 
also influenced case numbers; however, these two characteristics are also expected to be shaped more by 
the specific circumstances necessitated by a particular hurricane rather than by public health directives. 

Full model simulations of hurricane evacuation scenarios 

Next we used a national county-scale metapopulation model and a suite of scenarios to further explore 
how transmission rates and hurricane evacuation affect COVID-19 incidence in origin and destination 
counties (Methods). All scenarios assume that a Category 3 hurricane is approaching southeast Florida 
and that people living in Palm Beach, Broward, Miami-Dade, and Monroe Counties are ordered to 
evacuate. Based on studies of evacuation compliance and behavior in this region for Category 3+ 
hurricanes, we estimate that 48% of each county’s population would evacuate7,10–17 (Methods). Assuming 
that 19% of evacuees relocate elsewhere within their respective counties, this leads to a total of 2.3 
million evacuees leaving the four affected counties7,16–20.  
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For each scenario, evacuees were assigned to a different set of destination counties based on a list of 165 
possible destinations across 26 states identified during post-Hurricane Irma surveys7,17. In the baseline 
scenario, evacuees were assigned to all 165 destination counties in proportion to observed evacuation 
choices during Hurricane Irma. The number of evacuees assigned to each destination county for this 
baseline scenario is shown in Figure 2a. In order to explore the effects of destination county transmission 
levels on the number of evacuation-associated COVID-19 cases, we further proposed two hypothetical 
scenarios in which evacuees were assigned to locations with high 𝑅௘ or low 𝑅௘. In the high (low) 𝑅௘ 
scenario, 90% of the evacuees assigned to each county in the baseline scenario were instead diverted to 
the 82 counties with the highest (lowest) 𝑅௘, weighted by the proportion of evacuees sent to each of these 
counties in the baseline scenario (Methods). 

Scenario projections were initiated from the model state calibrated to observed county-level COVID-19 
case and death data from February 21st through July 23rd, 2020 (Methods). The estimated effective 
reproductive numbers (𝑅௘) in origin and destination counties at the start of simulations are shown in 
Figure 2b. Evacuees tend to stay with friends or family, in hotels/motels, or in public shelters, each of 
which would likely increase transmission opportunities relative to simply staying home7. To reflect this, 
we assume the COVID-19 transmission rate in destination counties increases during the evacuation period 
by either 0%, 10%, or 20%. These settings implicitly differentiate the levels of control effected in 
destinations during evacuation, as well as differences in transmission potential associated with different 
types of accommodation (e.g., staying with friends/families, hotels or shelters). In addition, to reflect 
periods of hurricane preparation and recovery21–23, we elevated the transmission rate in the origin counties 
by 20% beginning 3 days prior to evacuation and ending 3 days after the return of evacuees (more 
detailed simulation settings are provided in Methods). For comparison, we also generated simulations for 
the same period but without evacuation. 

In all scenarios, combined cases in origins and destinations are primarily driven by ongoing local 
COVID-19 transmission dynamics (Figure S1; Table S1); however, evacuation does alter disease 
outcomes. In the baseline scenario, total COVID-19 cases in the origin and destination counties increase 
significantly relative to the no-evacuation scenario (Figure 2c; Table 1; Wilcoxon signed rank test), 
indicating evacuation in and of itself can cause a statistically significant increase of COVID-19 cases. As 
indicated by the low and high scenarios, the number of COVID-19 cases resulting from evacuation is 
significantly lower (higher) than the baseline scenario if evacuees are directed to counties with lower 
(higher) transmission rates. However, as the transmission rate in the destination counties increases, the 
differences between the low and high scenarios become less pronounced. This result indicates that the 
benefits of a directed evacuation would be amplified by more stringent control efforts in destination 
counties. 

Greedy optimization method to minimize COVID-19 cases 

The model simulations for our hypothetical evacuation scenarios indicate that a strategic evacuation plan 
could reduce excess COVID-19 infections. However, these scenarios neither accounted for the 
accommodation capacities of destination counties nor provided a framework for optimizing evacuation 
plans.  

To address these issues, we developed a greedy search optimization algorithm aimed at minimizing total 
excess COVID-19 cases by strategically assigning evacuees to optimal destination counties.  As indicated 
by the two-county model simulations, evacuating individuals to destinations with low 𝑅௘ reduces 
COVID-19 transmission. However, given the varying prevalence of infection in origin counties and the 
nonlinear transmission dynamics, it is not straightforward to determine the optimal number of evacuees 
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from each origin county that should be prioritized and redirected to each of the  lowest-𝑅௘ 
destinations.  In conducting the optimization, we imposed the following constraints on human movement: 
1) we assumed that a fraction of evacuees cannot be redirected from their baseline destination county, 
representing individuals whose choice of destination will not be influenced by evacuation directives, 
perhaps due to financial constraints or preferences to stay with family; and 2) we prescribed a capacity 
limit on the number of evacuees received by each destination county. The greedy search starts from an 
evacuation matrix representing the evacuees who cannot be redirected from their destination and then 
iteratively directs the remaining evacuees to destination counties with lowest 𝑅௘. In each iteration, the 
algorithm selects which origin counties will be assigned the evacuee slots available in a destination 
county. This search is repeated for each successive destination county until all evacuees are assigned a 
destination (Methods, Supplementary Information).   

We repeated this evacuation optimization with three different settings: no increase, 10% increase, and 
20% increase of transmission rates in destination counties, again to reflect differences in control efforts 
and accommodation type. We assumed that 10% of evacuees will maintain their original destination and 
are thus not redirected, and that each destination has a capacity of 120% of the evacuees accepted in the 
baseline scenario. We then generated the optimized evacuation plan for each setting. During the 
optimization process, assigning more evacuees to low-𝑅௘ counties led to a reduced number of total 
infections compared to the baseline scenario (Figure S2). The optimized top 20 destinations for the four 
origin counties are reported in Tables S2-S4. In Figure 3a, we show the change in the number of evacuees 
to each destination for the optimized evacuation scenario with a 10% increased transmission rate in 
destination counties. In general, evacuees who traveled to high-𝑅௘ destinations in the baseline scenario 
were redirected to low-𝑅௘ destinations. For all three transmission rate scenarios, the optimized evacuation 
effectively reduces the number of excess cases in both origin and destination counties compared to the 
baseline scenario (Figure 3b). The reduction is greatest (up to 30%) for the scenario in which there is no 
increase in the transmission rate in destination counties, which highlights the crucial role of effective 
intervention during evacuation. In this optimization example, the fraction of non-allocable evacuees and 
destination capacity are hypothetical, as these quantities are unknown. If such information were available 
or could be estimated using socioeconomic and geographic characteristics, the optimization could be 
tailored to reflect more realistic constraints on evacuation. 

 

 

Figure 1: Results from the two-county model showing that origin and destination transmission rates have 
the greatest influence on final case numbers. (a) A schematic diagram for the two-county model. Blue and 
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orange boxes represent the origin and destination populations. Red dots within boxes represent infected 
individuals. (b) The marginal distribution of six parameters for the top 10% of combinations that lead to 
the lowest percentage increase (or highest percentage reduction) of reported cases in the origin county 
(solid red lines), the destination county (solid orange lines) and both counties combined (solid blue lines). 
Here 𝑅௘

௢௥௜ and 𝑅௘
ௗ௘௦  represent the transmission rates in the origin and destination; 𝑐𝑎𝑠𝑒௢௥௜ and 𝑐𝑎𝑠𝑒ௗ௘௦௧ 

represent the daily cases in the origin and destination; 𝑇௘௩௔ is the duration of evacuation; and 𝑝௘௩௔ is the 
fraction of the origin population evacuating. 
 

Table 1: Full metapopulation model simulation of the median number of excess cases in origin and 
destination counties for different evacuation scenarios (baseline, low, high, and optimized) and different 
increases of transmission rates (𝑅௘) in destination counties (no change, 10% increase, 20% increase). 
Note that the high and low 𝑅௘ scenarios are not subject to the constraint of destination capacity, whereas 
the optimized scenario takes into account a hypothetical capacity for each destination county.  

 0% 𝑅௘increase in 
destination 

10% 𝑅௘increase in 
destination 

20% 𝑅௘increase in 
destination 

 Origin 
excess 
cases 

Destination 
excess cases 

Origin 
excess 
cases 

Destination 
excess cases 

Origin 
excess 
cases 

Destination 
excess cases 

Baseline 
evacuation 

7,244 5,448 7,853 28,661 8,973 52,478 

High 𝑹𝒆 
evacuation 

11,593 5,209 12,173 27,649 14,338 51,996 

Low 𝑹𝒆 
evacuation 

4,409 1,999 5,143 27,270 6,669 50,080 

Optimized 
evacuation 

5,441 3,628 4,989 25,919 7,333 50,724 
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Figure 2: Simulations for evacuation using the national county-level transmission model. (a) The number 
of evacuees accepted by 165 destination counties in the baseline scenario. (b) The estimated effective 
reproductive numbers 𝑅௘ for both origin and destination counties on July 23rd, 2020. (c) Comparison of 
excess cases in origin and destination counties combined (left column), only origin counties (middle 
column) and only destination counties (right column) for the baseline, low and high evacuation scenarios. 
Simulations were performed for three settings: no increase (top row), 10% increase (middle row) and 20% 
increase (bottom row) of the transmission rates in destination counties. Box plots show the median and 
interquartile and whiskers show the 95% CIs. Asterisks indicate that excess cases are significantly lower 
or higher than the baseline scenario (Wilcoxon signed rank test, 𝑝 < 10ିହ). Results are obtained from 
100 model simulations. 
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Figure 3: Optimization of evacuation plans. (a) The change in the number of evacuees to destination 
counties in the optimized evacuation plan compared with the baseline evacuation scenario. Evacuation 
was optimized for the setting in which transmission rates in destination counties increase by 10%. (b) 
Excess cases for the baseline and optimized evacuation scenarios are compared for the origin and 
destination counties combined (left column), only origin counties (middle column) and only destination 
counties (right column). Simulations were performed for three settings: no increase (top row), 10% 
increase (middle row) and 20% increase (bottom row) of the transmission rates in destination counties. 
Boxes and whiskers show the median, interquartile and 95% CIs. Asterisks indicate that excess cases are 
significantly lower than the baseline scenario (Wilcoxon signed rank test, 𝑝 < 10ିହ). Results are obtained 
from 100 model simulations. 

 

DISCUSSION 

The results of this study have far-reaching consequences not only for hurricane evacuation this season but 
also for long-term US hurricane preparedness and evacuation planning. 
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Research suggests that people rely on past experiences when choosing their evacuation routes and 
destinations20,24. This study shows that excess COVID-19 cases could be minimized by instead directing 
evacuees to either counties with lower COVID-19 transmission rates or an optimized set of counties. 
While decisions about whether to evacuate and where to go ultimately fall to individual households, 
emergency communications from federal agencies and broadcast meteorologists can influence residents’ 
perceptions of hurricane threats and are seen as trusted sources of information in emergency situations25. 
Because a majority of US residents are concerned about COVID-1926, if the need for a large-scale 
evacuation arises, evacuees may turn to these same trusted sources for information on how best to stay 
safe while evacuating. Local, state, and federal officials who develop evacuation orders and communicate 
them to the general public may therefore want to consider whether their evacuation-related 
communications should include assessments of the relative safety of potential destination counties with 
respect to COVID-19 risk rather than allowing default evacuation patterns based on past storms to prevail. 

This research shows that the magnitude of the impact of evacuation on COVID-19 caseloads is highly 
dependent on conditions in destination counties. The degree to which counties are prepared to host, 
isolate, and meet the needs of evacuees while also minimizing virus exposure through public health 
directives such as social distancing and mask wearing will be a key determinant of the impact of 
evacuation on COVID-19 case numbers. Preparedness within destination counties is particularly 
important because, as this analysis shows, destination counties will bear the brunt of the excess COVID-
19 cases that result from an evacuation event. Destination counties must be aware of the influx of 
evacuees should it occur and must be allocated the financial and human resources needed to ensure the 
safety of both their residents and the evacuees they are sheltering. 

The US response to the COVID-19 pandemic has varied widely from state to state and from county to 
county. As a result of policy, communication and ideological differences, compliance with mask wearing, 
for example, has varied substantially even within a given state27. This variability could extend into 
county-level hurricane preparedness measures, particularly given that guidance may be issued at the state 
level while implementation of specific measures is left to counties, as is the case for Florida’s current co-
response guidance on hurricane evacuation and COVID-1928. 

Centuries of systemic racism in the US have left Black, Native American, Latinx, and other non-White 
people with both higher exposure to and fewer resources to cope with environmental or health-related 
stressors compared with White populations29,30. For example, recent research suggests that federal 
financial aid after natural disasters is not equitably distributed among communities and may even 
exacerbate income inequality31,32. Low-income communities and communities of color consequently 
struggle to prepare in advance of and recover in the wake of natural disasters33,34.  

Due to systemic health inequities, including higher exposure to air pollution29 and higher rates of 
underlying health conditions35, COVID-19 has also disproportionately affected Black, Native American, 
and Latinx people in the US36. These groups have experienced higher infection rates, poorer health 
outcomes, and deeper declines in employment during the pandemic36–38. The additional risks faced 
because of COVID-19 and the financial costs associated with evacuation39 could present additional 
challenges for these segments of the population during hurricane evacuation or discourage them from 
evacuating altogether. 

This study has used idealized scenarios to model hurricane evacuation patterns. These scenarios cannot 
fully capture many household-level choices that could alter levels of social contact—and therefore 
potential COVID-19 exposure—during the evacuation period. For example, previous studies of hurricane 
evacuations along the US Southeast and Gulf Coasts show that evacuees strongly and consistently prefer 
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to stay with friends and family over going to hotels/motels or public shelters7,14,15,20,39,40. Levels of social 
contact and potential virus transmission would likely differ across accommodation types, which implies a 
level of complexity and spatial heterogeneity that is not possible to incorporate within the model used in 
this study. Similarly, this study does not consider variable levels of exposure to COVID-19 based on 
evacuation transportation mode. While evacuees strongly prefer to travel in their own vehicles17, shared 
modes of transportation such as buses or carpools would increase potential virus transmission and 
exposure. Recent research suggests that for both transportation and shelter, the sharing economy—
Internet-based transactions via companies like Airbnb that allow for peer-to-peer sharing of goods and 
services—could play a role in providing free or affordable resources to evacuees that would enable 
evacuees to maintain social distancing41. 

As a result of the ongoing economic and physical toll of the pandemic, household-level decision making 
regarding evacuation may differ from that of past years. There are many sociodemographic factors 
associated with decision making around evacuation including experience with past hurricanes, length of 
residence, home ownership, age, income, race, employment status, level of social connectivity, social 
cues, perceived levels of self-efficacy and risk, and storm conditions42–46. While some of these factors 
(e.g. gender and race) are unchanged from last year, others (e.g. employment status and income) may be 
either changed or very much influenced by the current COVID-19 pandemic.  In contrast, the idealized 
scenarios adopted for this study assume that people will choose destination counties and accommodation 
types that match past choices.  

The movement of people in and out of hurricane-affected counties does not simply cease after all 
evacuees have returned to their homes. For instance, communities affected by hurricanes often experience 
an influx of workers who assist with rebuilding and recovery efforts47–49, which could also influence 
infection rates in the affected counties long after the evacuation period. Post-evacuation movement 
patterns are beyond the scope of the present study. 

Critically, hurricane evacuation is intended to save lives and prevent serious injuries to residents of 
hurricane-prone regions. While this study evaluates excess COVID-19 cases resulting from evacuation, it 
does not evaluate non-COVID-19 related risks to human health and lives in the event that people choose 
to remain in their homes despite receiving evacuation orders–risks that could increase if people are afraid 
to evacuate out of concern for contracting COVID-19. Nor does it address evacuations of hospitals, 
nursing homes, prisons, or other facilities. It will be critical for emergency managers to factor in these—
and other—complexities when developing plans50. 

Finally, the results presented here are based on scenarios that, while plausible, are strictly hypothetical. 
While the overall notion that distributing evacuees to destination counties with low transmission rates 
minimizes excess cases should theoretically apply to geographies outside Florida or the US, additional 
model simulations of such scenarios should be generated. 

CONCLUSION 

The data presented here show that while a large-scale hurricane evacuation would increase the total 
number of COVID-19 cases in the US, directing evacuees to plausible destination counties with low 
COVID-19 transmission rates would minimize the excess cases induced by the evacuation event. These 
results have far-reaching implications for immediate emergency management and communications 
practices, as well as long-term disaster preparedness.  

Faced with the prospect of tens of thousands of additional cases arising from a hurricane evacuation, 
states and counties at both ends of evacuation routes must be allocated the necessary financial and human 
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resources required to meet evacuees’ needs while also ensuring community safety and health through 
measures intended to reduce COVID-19 transmission rates. Further, resource distribution must prioritize 
the nation’s most vulnerable groups. 
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METHODS  

Hurricane evacuation scenario development 

To develop a hypothetical hurricane evacuation scenario for southeast Florida, we drew from previously 
published hurricane evacuation studies focused on Category 3+ hurricanes that have affected the 
Southeast or Gulf Coast regions of the US. In this scenario, we assumed a Category 3 hurricane 
approaching the southeast Florida coast along a track that would necessitate evacuations from Palm 
Beach51, Broward52, Miami-Dade53, and Monroe54 Counties.  

We obtained the population under mandatory evacuation orders in each county from GIS shapefiles of the 
zones of mandatory evacuation from a Category 3+ hurricane for each county55. We then calculated the 
percent of the population living within mandatory evacuation zones that would actually comply with 
evacuation orders by averaging the compliance rate from eight regionally relevant studies of evacuation 
behavior7,10–16. We found that the average evacuation order compliance rate from these studies was 66%. 
Because many people living outside of the mandatory evacuation zones voluntarily choose to evacuate 
during hurricanes as well, we used the same approach to calculate the percent of the population living 
outside of mandatory evacuation zones but within the affected counties that would evacuate. Based on 
four studies of this “shadow evacuation” phenomenon, we determined that an average of 47% of county 
residents outside mandatory evacuation zones would also evacuate7,13–15,17. The mandatory and voluntary 
evacuees together represent 48% of each origin county’s population. We then determined that 19% of 
these evacuees would relocate within their respective counties based on the average from four evacuation 
behavior studies7,16–20. 

Finally, to determine the destination counties of evacuees from each of the four origin counties, we 
obtained raw post-Hurricane Irma survey data7,17. These data allowed us to identify both the destination 
counties and the percent of evacuees choosing each destination county. We then apportioned evacuees 
leaving the four origin counties to each destination county. 
 

Two-county model of COVID-19 transmission  

In order to identify the most sensitive factors driving the COVID-19 transmission during evacuation, we 
first ran simulations using a simple two-county model. This model describes the transmission dynamics of 
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COVID-19 during a hurricane evacuation from an origin (county 1) to a destination (county 2). 
Mathematically, the transmission dynamics in the origin and destination are depicted by a susceptible-
exposed-infected-recovered (SEIR) model. We simulate the disease transmission as a stochastic Markov 
process using the following equations: 

𝑆௜(𝑡 + 1) = 𝑆௜(𝑡) −
𝛽௜𝑆௜(𝑡)𝐼௜

௥(𝑡)

𝑁௜
−

𝜇𝛽௜𝑆௜(𝑡)𝐼௜
௨(𝑡)

𝑁௜
, (1) 

𝐸௜(𝑡 + 1) = 𝐸௜(𝑡) +
𝛽௜𝑆௜(𝑡)𝐼௜

௥(𝑡)

𝑁௜
+

𝜇𝛽௜𝑆௜(𝑡)𝐼௜
௨(𝑡)

𝑁௜
−

𝐸௜(𝑡)

𝑍
, (2) 

𝐼௜
௥(𝑡 + 1) = 𝐼௜

௥(𝑡) + 𝛼
𝐸௜(𝑡)

𝑍
−

𝐼௜
௥(𝑡)

𝐷
, (3) 

𝐼௜
௨(𝑡 + 1) = 𝐼௜

௨(𝑡) + (1 − 𝛼)
𝐸௜(𝑡)

𝑍
−

𝐼௜
௨(𝑡)

𝐷
, (4) 

𝑅௜(𝑡 + 1) = 𝑅௜(𝑡) +
𝐼௜

௥(𝑡)

𝐷
+

𝐼௜
௨(𝑡)

𝐷
. (5) 

Here 𝑁௜, 𝑆௜(𝑡), 𝐸௜(𝑡), 𝐼௜
௥(𝑡), 𝐼௜

௨(𝑡) and 𝑅௜(𝑡) are the total, susceptible, exposed, reported infected, 
unreported infected and recovered population in county 𝑖 on day 𝑡; 𝛽௜ is the transmission rate in county 𝑖; 
𝜇 is the relative transmissibility for unreported infections; 𝑍 is the average latency period; 𝐷 is the 
average duration of infectiousness; 𝛼 is the fraction of reported infections. The effective reproductive 
number, which quantifies the local transmission rate, is computed as 𝑅௘ = 𝛽௜𝐷[𝛼 + 𝜇(1 − 𝛼)]𝑆௜/𝑁௜ 
using the next generation matrix approach. 

During evacuation, we assume a fraction (𝑝௘௩௔) of the population is evacuated from county 1 to county 2 
and mixes with the local population for 𝑇௘௩௔ days. Individuals within each compartment are randomly 
drawn from the population in the origin. We track the infections in the evacuated population in county 2, 
which then return to the origin after the evacuation and mix with the population therein. To account for 
the increased human interactions associated with evacuating to shared living spaces7, we additionally 
assume the transmission rates in the origin and destination are elevated during a period that spans the 
evacuation process. Specifically, the transmission rate in the origin is increased by 20% starting from 3 
days prior to the evacuation until 3 days after the return of evacuees.  The transmission rate in the 
destination is increased by 20% during the evacuation. 

In model simulations, we fixed the following parameters in Eqs. (1)-(5): total population 𝑁ଵ = 𝑁ଶ = 10଺; 
reporting rate 𝛼 = 0.1; relative transmissibility 𝜇 = 0.64; latency period 𝑍 = 4 days; infectious period 
𝐷 = 4 days. Denote the daily reported cases in the origin and destination as 𝑐𝑎𝑠𝑒௜. To initiate model 
simulations, we set 𝐼௜

௥(0) = 𝑐𝑎𝑠𝑒௜𝐷, 𝐼௜
௨(0) = 𝐼௜

௥(0)/𝛼 − 𝐼௜
௥(0), 𝐸௜(0) = 𝐼௜

௥(0) + 𝐼௜
௨(0), 𝑅௜(0) = 0.05𝑁௜ 

and 𝑆௜(0) = 𝑁௜ − 𝐸௜(0) − 𝐼௜
௥(0) − 𝐼௜

௨(0) − 𝑅௜(0). Model simulations were generated for the following 
stages after day 0: 14 days of local transmission, 3 days of pre-evacuation (with elevated transmission rate 
in the origin), 𝑇௘௩௔ days of evacuation (with elevated transmission rates in both the origin and destination 
counties), 3 days of post-evacuation (with elevated transmission rate in the origin), and 28 days of 
additional post-evacuation simulation.  

We varied six parameters to generate a large number of parameter combinations for use in model 
simulation: 𝛽ଵ, 𝛽ଶ = 0.1, 0.2, … , 0.8; 𝑇௘௩௔ = 3, 4, … , 10 days; 𝑝௘௩௔ = 0.1, 0.2, … , 0.8; 𝑐𝑎𝑠𝑒ଵ, 𝑐𝑎𝑠𝑒ଶ =

50, 100, … , 400. In total, 8଺ = 262,144 parameter combinations were simulated. For comparison, we 
also ran a simulation without evacuation for each parameter combination and computed the percentage 
change of total cases in the origin and destination counties attributed to evacuation. We selected the top 
10% of combinations that lead to the lowest percentage increase (or highest percentage reduction) of 
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reported cases in the origin county, the destination county and both counties combined, and inspected the 
marginal distributions of those six parameters. 

Simulating COVID-19 transmission in the US 

Following the two-county model analysis, we conducted in-depth COVID-19 simulations using a nation-
wide metapopulation SEIR model representing all 3,142 US counties9. In this model, disease transmission 
in each county follows SEIR dynamics, but is also influenced by movement to and from other counties. 
We consider two types of movement: daily work commuting and random movement. To simulate 
movement prior to March 15, 2020, we use information on county-to-county work commuting that is 
publicly available from the US Census Bureau. After March 15, the census survey data are no longer 
representative due to changes of mobility behavior in response to COVID-19 control measures. 
Therefore, in simulating movement after March 15, 2020, we use estimates of the reduction of inter-
county visitors to points of interest (POI) (e.g., restaurants, stores, etc.) to inform the decline of inter-
county movement on a county-by-county basis. We generated these estimates using data from 
SafeGraph56. We further assume the number of random visitors between two counties is proportional to 
the average number of commuters between them. As population present in each county is different during 
daytime and nighttime, we model the transmission dynamics of COVID-19 separately for these two time 
periods. The model equations are presented in the supplementary information. Similar models have been 
used to simulate COVID-19 transmission in China57 and influenza transmission in the United States58,59. 
The local effective reproductive number is derived as 𝑅௘ = 𝛽௜𝐷[𝛼 + 𝜇(1 − 𝛼)]𝑆௜/𝑁௜. To account for 
reporting delays in COVID-19 case and death observations, we mapped simulated documented infections 
to confirmed cases using a separate observational delay model fitted to the US case data59. 

We calibrated the transmission model against county-level case and death data reported from February 
21, 2020 through July 23, 202056,60, which produced an estimate of model parameters and state variables. 
We then ran simulations representing the following stages: 3 days of pre-evacuation, 7 days of 
evacuation, 3 days of post-evacuation and 14 days after post-evacuation. For comparison, we also ran 
simulations without evacuation and increase of transmission rates in origin and destination counties. An 
ensemble of 100 trajectories were generated to represent the uncertainty arising from different initial 
conditions and stochastic dynamics. 

In the modeled hurricane evacuation, 𝑉௝௜ evacuees travel from origin 𝑖 to destination 𝑗 and mix with the 
local population for 𝑇௘௩௔ = 7 days, before returning to origin 𝑖. As for the two-county model, we 
increased the transmission rate in origin counties by 20% during the 3-day pre-evacuation, 7-day 
evacuation and 3-day post-evacuation. Three scenarios in which the transmission rate in destination 
counties is increased by 0%, 10% and 20% were simulated to compare different effects of hosting 
evacuees on local disease transmission.   

The greedy algorithm to optimize evacuation 

We developed a greedy optimization algorithm aimed at minimizing total excess COVID-19 cases by 
strategically assigning evacuees to optimal destination counties.  In the evacuation optimization, we 
assume that a fraction 𝑝 of evacuees from an origin to a destination won’t change their evacuation plans 
(for reasons such as personal connections at the destination or budgetary limitations) and the capacity of 
accepting evacuees for each destination 𝑗 is 𝐶௝. Denote the baseline evacuation matrix as 𝑽, where 𝑉௝௜ 
represents the number of evacuees from origin 𝑖 to destination 𝑗. The optimization objective is to assign 
the rest of evacuees (i.e., (1 − 𝑝) × ∑ 𝑉௝௜௝  from origin 𝑖) to destinations in an optimal way that minimizes 
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the total infections in both origin and destination counties. Finding the exact solution to this combinatorial 
optimization problem is computationally challenging due to the large number of options.  

In this study, we use a practically feasible greedy optimization approach that prioritizes moving the un-
assigned evacuees to destinations with low 𝑅௘. Specifically, we start from the evacuation matrix 𝑝𝑽 that 
represents evacuees assigned a destination. In each step of greedy search, we run a series of simulations, 
each one filling the available evacuee slots in the destination with the lowest 𝑅௘ from one of the origin 
counties. We select the origin county that generates the minimum number of reported cases and assign 
them to the destination county. We repeat this greedy search for each successive destination county until 
all evacuees are assigned a destination. The pseudo-code for this greedy algorithm is provided in the 
supplementary information. In this study, we assume 10% of evacuees from an origin to a destination in 
the baseline evacuation matrix 𝑽 cannot be reallocated (i.e., 𝑝 = 0.1), and the capacity of each destination 
is 120% of the evacuees in the baseline scenario 𝑽 (i.e., 𝐶௝ = 1.2 ∑ 𝑉௝௜௜ ). 
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We formulate COVID-19 transmission as a discrete Markov process during both day and night. Daytime 
transmission lasts for 𝑑𝑡ଵ days and the nighttime transmission 𝑑𝑡ଶ days (𝑑𝑡ଵ + 𝑑𝑡ଶ = 1). Here, we 
assume daytime transmission lasts for 8 hours and nighttime transmission lasts for 16 hours, i.e., 𝑑𝑡ଵ =

1/3 day and 𝑑𝑡ଶ = 2/3 day. The transmission dynamics are depicted by the following equations. 

Daytime transmission: 

𝐸௜௝(𝑡 + 𝑑𝑡ଵ) = 𝐸௜௝(𝑡) +
𝛽𝑆௜௝(𝑡) ∑ 𝐼௞௜

௥ (𝑡)௞

𝑁௜
஽(𝑡)

𝑑𝑡ଵ +
𝜇𝛽𝑆௜௝(𝑡) ∑ 𝐼௜௞

௨
௞ (𝑡)

𝑁௜
஽(𝑡)

𝑑𝑡ଵ −
𝐸௜௝(𝑡)

𝑍
𝑑𝑡ଵ

+ 𝜃𝑑𝑡ଵ

𝑁௜௝ − 𝐼௜௝
௥ (𝑡)

𝑁௜
஽(𝑡)

෍
𝑁ഥ௜௞ ∑ 𝐸௞௟(𝑡)௟

𝑁௞
஽(𝑡) − ∑ 𝐼௟௞

௥ (𝑡)௟
௞ஷ௜

− 𝜃𝑑𝑡ଵ

𝐸௜௝(𝑡)

𝑁௜
஽(𝑡) − ∑ 𝐼௟௜

௥ (𝑡)௟

෍ 𝑁ഥ௞௜

௞ஷ௜

  (1) 

𝐼௜௝
௥ (𝑡 + 𝑑𝑡ଵ) = 𝐼௜௝

௥ (𝑡) + 𝛼
𝐸௜௝(𝑡)

𝑍
𝑑𝑡ଵ −

𝐼௜௝
௥ (𝑡)

𝐷
𝑑𝑡ଵ  (2) 

𝐼௜௝
௨(𝑡 + 𝑑𝑡ଵ) = 𝐼௜௝

௨(𝑡) + (1 − 𝛼)
𝐸௜௝(𝑡)

𝑍
𝑑𝑡ଵ −

𝐼௜௝
௨(𝑡)

𝐷
𝑑𝑡ଵ + 𝜃𝑑𝑡ଵ

𝑁௜௝ − 𝐼௜௝
௥ (𝑡)

𝑁௜
஽(𝑡)

෍
𝑁ഥ௜௞ ∑ 𝐼௞௟

௨ (𝑡)௟

𝑁௞
஽(𝑡) − ∑ 𝐼௟௞

௥
௟ (𝑡)

௞ஷ௜

− 𝜃𝑑𝑡ଵ

𝐼௜௝
௨(𝑡)

𝑁௜
஽(𝑡) − ∑ 𝐼௟௜

௥(𝑡)௟

෍ 𝑁ഥ௞௜

௞ஷ௜

 (3) 

𝑅௜௝(𝑡 + 𝑑𝑡ଵ) = 𝑅௜௝(𝑡) +
𝐼௜௝

௥ (𝑡)

𝐷
𝑑𝑡ଵ +

𝐼௜௝
௨(𝑡)

𝐷
𝑑𝑡ଵ + 𝜃𝑑𝑡ଵ

𝑁௜௝ − 𝐼௜௝
௥ (𝑡)

𝑁௜
஽(𝑡)

෍
𝑁ഥ௜௞ ∑ 𝑅௞௟(𝑡)௟

𝑁௞
஽(𝑡) − ∑ 𝐼௟௞

௥ (𝑡)௟
௞ஷ௜

− 𝜃𝑑𝑡ଵ

𝑅௜௝(𝑡)

𝑁௜
஽(𝑡) − ∑ 𝐼௟௜

௥ (𝑡)௟

෍ 𝑁ഥ௞௜

௞ஷ௜

  (4) 

𝑁௜
஽(𝑡) = 𝑁௜௜ + ෍ 𝐼௞௜

௥ (𝑡)

௞ஷ௜

+ ෍(𝑁௜௞ − 𝐼௜௞
௥ (𝑡)

௞ஷ௜

)  (5) 

 

Nighttime transmission: 

𝐸௜௝(𝑡 + 1) = 𝐸௜௝(𝑡 + 𝑑𝑡ଵ) +
𝛽𝑆௜௝(𝑡 + 𝑑𝑡ଵ) ∑ 𝐼௞௝

௥ (𝑡 + 𝑑𝑡ଵ)௞

𝑁௝
ே 𝑑𝑡ଶ +

𝜇𝛽𝑆௜௝(𝑡 + 𝑑𝑡ଵ) ∑ 𝐼௞௝
௨ (𝑡 + 𝑑𝑡ଵ)௞

𝑁௝
ே 𝑑𝑡ଶ

−
𝐸௜௝(𝑡 + 𝑑𝑡ଵ)

𝑍
𝑑𝑡ଶ + 𝜃𝑑𝑡ଶ

𝑁௜௝

𝑁௝
ே ෍

𝑁ഥ௝௞ ∑ 𝐸௟௞(𝑡 + 𝑑𝑡ଵ)௟

𝑁௞
ே − ∑ 𝐼௟௞

௥ (𝑡 + 𝑑𝑡ଵ)௟
௞ஷ௝

− 𝜃𝑑𝑡ଶ

𝐸௜௝(𝑡 + 𝑑𝑡ଵ)

𝑁௝
ே − ∑ 𝐼௞௝

௥ (𝑡 + 𝑑𝑡ଵ)௞

෍ 𝑁ഥ௞௝

௞ஷ௝

    (6) 

𝐼௜௝
௥ (𝑡 + 1) = 𝐼௜௝

௥ (𝑡 + 𝑑𝑡ଵ) + 𝛼
𝐸௜௝(𝑡 + 𝑑𝑡ଵ)

𝑍
𝑑𝑡ଶ −

𝐼௜௝
௥ (𝑡 + 𝑑𝑡ଵ)

𝐷
𝑑𝑡ଶ  (7) 

𝐼௜௝
௨(𝑡 + 1) = 𝐼௜௝

௨(𝑡 + 𝑑𝑡ଵ) + (1 − 𝛼)
𝐸௜௝(𝑡 + 𝑑𝑡ଵ)

𝑍
𝑑𝑡ଶ −

𝐼௜௝
௨(𝑡 + 𝑑𝑡ଵ)

𝐷
𝑑𝑡ଶ

+ 𝜃𝑑𝑡ଶ

𝑁௜௝

𝑁௝
ே ෍

𝑁ഥ௝௞ ∑ 𝐼௟௞
௨ (𝑡 + 𝑑𝑡ଵ)௟

𝑁௞
ே − ∑ 𝐼௟௞

௥ (𝑡 + 𝑑𝑡ଵ)௟
௞ஷ௝

− 𝜃𝑑𝑡ଶ

𝐼௜௝
௨(𝑡 + 𝑑𝑡ଵ)

𝑁௝
ே − ∑ 𝐼௞௝

௥
௞ (𝑡 + 𝑑𝑡ଵ)

෍ 𝑁ഥ௞௝

௞ஷ௝

   (8) 
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𝑅௜௝(𝑡 + 1) = 𝑅௜௝(𝑡 + 𝑑𝑡ଵ) +
𝐼௜௝

௥ (𝑡 + 𝑑𝑡ଵ)

𝐷
𝑑𝑡ଶ +

𝐼௜௝
௨(𝑡 + 𝑑𝑡ଵ)

𝐷
𝑑𝑡ଶ + 𝜃𝑑𝑡ଶ

𝑁௜௝

𝑁௝
ே ෍

𝑁ഥ௝௞ ∑ 𝑅௟௞(𝑡 + 𝑑𝑡ଵ)௟

𝑁௞
ே − ∑ 𝐼௟௞

௥ (𝑡 + 𝑑𝑡ଵ)௟
௞ஷ௝

− 𝜃𝑑𝑡ଶ

𝑅௜௝(𝑡 + 𝑑𝑡ଵ)

𝑁௝
ே − ∑ 𝐼௞௝

௥ (𝑡 + 𝑑𝑡ଵ)௞

෍ 𝑁ഥ௞௝

௞ஷ௝

  (9) 

𝑁௜
ே = ෍ 𝑁௞௜

௞

  (10) 

Here, 𝑆௜௝, 𝐸௜௝ , 𝐼௜௝
௥ , 𝐼௜௝

௨ , 𝑅௜௝  and 𝑁௜௝  are the susceptible, exposed, reported infected, unreported infected, 

recovered and total populations in the subpopulation commuting from county 𝑗 to county 𝑖 (𝑖 ← 𝑗), where 
𝑆௜௝ = 𝑁௜௝ − 𝐸௜௝ − 𝐼௜௝

௥ − 𝐼௜௝
௨ − 𝑅௜௝; 𝛽 is the transmission rate of reported infections; 𝜇 is the relative 

transmissibility of unreported infections; 𝑍 is the average latency period (from infection to 
contagiousness); 𝐷 is the average duration of contagiousness; 𝛼 is the fraction of documented infections; 
𝜃 is a multiplicative factor adjusting random movement; 𝑁ഥ௜௝ = (𝑁௜௝ + 𝑁௝௜)/2 is the average number of 

commuters between counties 𝑖 and 𝑗; and 𝑁௜
஽ and 𝑁௜

ே are the daytime and nighttime populations of 
county 𝑖. 

The pseudo-code for the greedy optimization algorithm 

Input:  
Origin 𝑖 = 1, 2, … , 𝑛 
Destination 𝑗 = 1, 2, … , 𝑚, where 𝑅௘(1) ≥ 𝑅௘(2) ≥ ⋯ ≥ 𝑅௘(𝑚) 
Evacuation matrix 𝑽 = {𝑉௝௜}, 𝑉௝௜ is the number of evacuees from origin 𝑖 to destination 𝑗 in the baseline 
scenario 
Capacity of evacuees that can be accommodated by each destination: 𝐶௝ 
The fraction of evacuees that can’t be reallocated for each origin-destination pair: 𝑝 
 
Variables:  
𝑢௜:: the current number of evacuees in origin 𝑖 that could be reallocated to different counties 
𝑣: the currently available destination county with lowest 𝑅௘.   
𝑴: the current evacuation matrix, 𝑀௩௜ is the number of evacuees assigned from origin 𝑖 to destination 𝑣. 
 
Initial conditions: 
𝑣 = 𝑚 
 𝑢௜ = (1 − 𝑝) ∑ 𝑉௝௜௝   
𝑴 = 𝑝𝑽  
 
Algorithm: 
While max(𝑢௜) > 0 

For 𝑖 = 1 to 𝑛 
  𝑴௜ = 𝑴: reallocating from origin 𝑖 to 𝑣 
  𝑴௩௜

௜ = min൫𝑀௩௜ + ൫𝐶௩ − ∑ 𝑀௩௝௝ ൯, 𝑀௩௜ + 𝑢௜൯ 

  𝑢௧௘௠௣
௜ = 𝑢௜ − (𝑀௩௜

௜ − 𝑀௩௜) 
  Run projection using 𝑀௜ 
  𝐼𝑛𝑓௜: total infection in all origin and destination counties 
 End 
 𝑘 = min

௜
𝐼𝑛𝑓௜ 
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 𝑴 = 𝑴௞ 
 𝑢௞ = 𝑢௧௘௠௣

௞  
 If ∑ 𝑴௩௝௝ == 𝐶௩ 
  𝑣 = 𝑣 − 1 
 End 
End 
Output 𝑴 as the optimized evacuation matrix. 

 

 

Fig. S1. Comparison of total cases in the origin and destination counties combined (left column), the 
origin counties only (middle column) and destination counties only (right column) for the no-evacuation, 
baseline, low and high evacuation scenarios. Simulations were performed for three settings: no increase 
(top row), 10% increase (middle row) and 20% increase (bottom row) of transmission rates in destination 
counties. Box plots show the median and interquartile and whiskers show the 95% CIs. Asterisks indicate 
that excess cases are significantly higher than the no-evacuation scenario (Wilcoxon signed rank test, 𝑝 <

10ିହ). 
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Fig. S2. Evolution of the total cases (blue lines) and the number of assigned evacuees (red lines) in the 
greedy algorithm. Results are shown for the settings with no increase, 10% increase and 20% increase of 
transmission rates in destination counties. The optimization starts from an evacuation matrix 0.1 × 𝑽, 
where 𝑽 represents the evacuation matrix in the baseline scenario.  

 

Table S1. The median number of total cases in origin and destination counties for different evacuation 
scenarios (no evacuation, baseline, low and high) and levels of elevated transmission rates (𝑅௘) in 
destination counties (no change, 10% increase, 20% increase). In the no evacuation scenario (𝑅௘) in 
destination counties is not increased. Note that the median excess cases shown in Table 1 is not 
necessarily the difference of the median total cases between the evacuation and non-evacuation scenarios 
shown in Table S1. That is, 𝑚𝑒𝑑𝑖𝑎𝑛൫𝑡𝑜𝑡𝑎𝑙𝑐𝑎𝑠𝑒௘௩௔(𝑖) − 𝑡𝑜𝑡𝑎𝑙𝑐𝑎𝑠𝑒௡௢௘௩௔(𝑖)൯ ≠

𝑚𝑒𝑑𝑖𝑎𝑛൫𝑡𝑜𝑡𝑎𝑙𝑐𝑎𝑠𝑒௘௩௔(𝑖)൯ − 𝑚𝑒𝑑𝑖𝑎𝑛൫𝑡𝑜𝑡𝑎𝑙𝑐𝑎𝑠𝑒௡௢௘௩௔(𝑖)൯, where 𝑡𝑜𝑡𝑎𝑙𝑐𝑎𝑠𝑒௘௩௔(𝑖) and 
𝑡𝑜𝑡𝑎𝑙𝑐𝑎𝑠𝑒௡௢௘௩௔(𝑖) are the total numbers of cases for evacuation and non-evacuation scenarios in the 𝑖th 
simulation. 

 0% 𝑅௘increase in 
destination 

10% 𝑅௘increase in 
destination 

20% 𝑅௘increase in 
destination 

 Origin 
cases 

Destination 
cases 

Origin 
cases 

Destination 
cases 

Origin 
cases 

Destination 
cases 

No 
Evacuation 

172,400 525,320 172,692 526,044 172,562 524,467 

Baseline 
evacuation 

181,322 530,706 180,901 553,971 182,590 575,891 
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High 𝑹𝒆 
evacuation 

185,100 529,781 185,527 555,062 187,431 577,885 

Low 𝑹𝒆 
evacuation 

178,029 527,180 179,317 553,875 179,788 576,043 

 

 

 

Table S2. The optimized evacuation plan (no increase of transmission rates in destination counties). We 
show the top 20 destinations for each origin county. 

Palm Beach County FL Broward County FL Miami-Dade County FL Monroe County FL 
Leon 

County FL 67926 
Polk County 

FL 42726 
Orange 

County FL 277387 
Sullivan 

County TN 8333 
Natchitoches 

Parish LA 25472 
Escambia 
County FL 34181 

Hillsborough 
County FL 60678 

Walton 
County FL 8333 

Davidson 
County TN 25472 

Lake County 
FL 34181 

Osceola 
County FL 60678 

Spalding 
County GA 8333 

Marion 
County IN 16981 

Richland 
County SC 34181 

Buncombe 
County NC 60678 

Tift County 
GA 8333 

Jefferson 
County TN 16981 

Volusia 
County FL 34181 

Alachua 
County FL 34674 

Forsyth 
County GA 649 

Camden 
County GA 16981 

Collier 
County FL 34181 

Jefferson 
County AL 26005 

Orange 
County FL 399 

Macon 
County GA 16981 

Hamilton 
County TN 34181 

Mobile 
County AL 26005 

Fulton 
County GA 125 

Forsyth 
County GA 16357 

Seminole 
County FL 34181 

Palm Beach 
County FL 20372 

Leon County 
FL 100 

Montour 
County PA 8491 

Sarasota 
County FL 25635 

St. 
Tammany 
Parish LA 17336 

Hillsborough 
County FL 87 

Franklin 
County VA 8491 

Sumter 
County FL 25635 

Forrest 
County MS 17336 

Osceola 
County FL 87 

Clay County 
KY 8491 

Lee County 
AL 17090 

Manatee 
County FL 17336 

Buncombe 
County NC 87 

Harrison 
County MS 8491 

St. Johns 
County FL 17090 

Prince 
Edward 

County VA 17336 
Polk County 

FL 62 
Dougherty 
County GA 8491 

Bay County 
FL 17090 

Oneida 
County WI 8668 

Broward 
County FL 50 

Anderson 
County TN 8491 

Medina 
County OH 17090 

Stanly 
County NC 8668 

Cobb 
County GA 50 

Gibson 
County TN 8491 

Greenville 
County SC 17090 

Baltimore 
County MD 8668 

Highlands 
County FL 50 

Sumter 
County GA 8491 

Tuscaloosa 
County AL 17090 

Watauga 
County NC 8668 

Alachua 
County FL 50 

Florence 
County SC 8491 

Williamson 
County TN 17090 

Winchester 
city VA 8668 

Escambia 
County FL 50 
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Marathon 
County WI 8491 

Wake 
County NC 13191 

Maury 
County TN 8668 

Lake County 
FL 50 

Gulf County 
FL 8491 

Montgomery 
County MD 8545 

Queen 
Anne's 

County MD 8668 
Richland 

County SC 50 
Jefferson 

County FL 8491 
Hamilton 

County OH 8545 
Lexington 
County SC 8668 

Volusia 
County FL 50 

 

Table S3. The optimized evacuation plan (10% increase of transmission rates in destination counties). We 
show the top 20 destinations for each origin county. 

Palm Beach County 
FL 

Broward County FL Miami-Dade County FL Monroe County FL 

Leon 
County FL 67926 

Polk County 
FL 42726 

Orange 
County FL 277387 

St. Johns 
County FL 8969 

Jefferson 
County AL 25472 

Escambia 
County FL 34181 

Hillsborough 
County FL 60678 

Charleston 
County SC 8333 

Mobile 
County AL 25472 

Lake 
County FL 34181 

Osceola 
County FL 60678 

Walton 
County FL 8333 

Marion 
County IN 16981 

Richland 
County SC 34181 

Buncombe 
County NC 60678 

Oakland 
County MI 8333 

Macon 
County 

GA 16981 
Volusia 

County FL 34181 
Alachua 

County FL 34674 
Orange 

County FL 399 
Lee 

County AL 16981 
Collier 

County FL 34181 
Natchitoches 

Parish LA 26005 
Fulton 

County GA 125 
Jefferson 

County TN 11527 
Hamilton 

County TN 34181 
Davidson 

County TN 26005 
Leon County 

FL 100 
Montour 

County PA 8491 
Seminole 

County FL 34181 
Palm Beach 
County FL 20372 

Hillsborough 
County FL 87 

Franklin 
County 

VA 8491 
Sarasota 

County FL 25635 
Camden 

County GA 17336 
Osceola 

County FL 87 
Clay 

County 
KY 8491 

Sumter 
County FL 25635 

St. 
Tammany 
Parish LA 17336 

Buncombe 
County NC 87 

Harrison 
County 

MS 8491 
Bay County 

FL 17090 
Forrest 

County MS 17336 
Polk County 

FL 62 
Dougherty 

County 
GA 8491 

Manatee 
County FL 17090 

Forsyth 
County GA 17336 

Broward 
County FL 50 

Anderson 
County TN 8491 

Medina 
County OH 17090 

Wake 
County NC 17336 

Cobb 
County GA 50 

Gibson 
County TN 8491 

Prince 
Edward 

County VA 17090 
Tuscaloosa 
County AL 17336 

Highlands 
County FL 50 

Sumter 
County 

GA 8491 
Greenville 
County SC 17090 

Williamson 
County TN 17336 

Alachua 
County FL 50 
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Florence 
County SC 8491 

Martin 
County FL 8545 

Gulf County 
FL 8668 

Escambia 
County FL 50 

Marathon 
County WI 8491 

Baker 
County FL 8545 

Jefferson 
County FL 8668 

Lake County 
FL 50 

Towns 
County 

GA 8491 
Ben Hill 

County GA 8545 
Greene 

County TN 8668 
Richland 

County SC 50 
Frederick 
County 

VA 8491 
Santa Cruz 
County CA 8545 

Jackson 
County GA 8668 

Volusia 
County FL 50 

Pitt County 
NC 8491 

Rockingham 
County VA 8545 

Madison 
County MS 8668 

Collier 
County FL 50 

 

Table S4. The optimized evacuation plan (20% increase of transmission rates in destination counties). We 
show the top 20 destinations for each origin county. 

Palm Beach County 
FL 

Broward County FL Miami-Dade County FL Monroe County FL 

Leon 
County FL 67926 

Polk 
County FL 42726 

Orange 
County FL 277387 

Dodge 
County GA 8333 

Davidson 
County TN 25472 

Escambia 
County FL 34181 

Hillsborough 
County FL 60678 

St. Lucie 
County FL 8333 

Jefferson 
County AL 25472 

Lake 
County FL 34181 

Osceola 
County FL 60678 

Erie County 
NY 8333 

Marion 
County IN 16981 

Richland 
County SC 34181 

Buncombe 
County NC 60678 

Maricopa 
County AZ 8333 

Jefferson 
County TN 16981 

Volusia 
County FL 34181 

Alachua 
County FL 34674 

Lexington 
County SC 637 

Wake 
County NC 16981 

Collier 
County FL 34181 

Natchitoches 
Parish LA 26005 

Orange 
County FL 399 

Forsyth 
County 

GA 12560 
Hamilton 

County TN 34181 
Mobile 

County AL 26005 
Fulton 

County GA 125 
Montour 

County PA 8491 
Seminole 

County FL 34181 
Palm Beach 
County FL 20372 

Leon County 
FL 100 

Franklin 
County 

VA 8491 
Sarasota 

County FL 25635 
Camden 

County GA 17336 
Hillsborough 
County FL 87 

Clay 
County 

KY 8491 
Sumter 

County FL 25635 
Macon 

County GA 17336 
Osceola 

County FL 87 
Harrison 
County 

MS 8491 
St. Johns 

County FL 17090 

St. 
Tammany 
Parish LA 17336 

Buncombe 
County NC 87 

Dougherty 
County 

GA 8491 
Bay County 

FL 17090 
Forrest 

County MS 17336 
Polk County 

FL 62 
Anderson 

County TN 8491 
Manatee 

County FL 17090 
Lee County 

AL 17336 
Broward 

County FL 50 
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Gibson 
County TN 8491 

Medina 
County OH 17090 

Tuscaloosa 
County AL 17336 

Cobb 
County GA 50 

Sumter 
County 

GA 8491 

Prince 
Edward 

County VA 17090 
Gulf County 

FL 8668 
Highlands 
County FL 50 

Marathon 
County WI 8491 

Greenville 
County SC 17090 

Jefferson 
County FL 8668 

Alachua 
County FL 50 

Towns 
County 

GA 8491 
Williamson 
County TN 17090 

Greene 
County TN 8668 

Escambia 
County FL 50 

Frederick 
County 

VA 8491 
Winston 

County AL 8545 
Jackson 

County GA 8668 
Lake County 

FL 50 
Pitt County 

NC 8491 
Escambia 

County AL 8545 
Madison 

County MS 8668 
Richland 

County SC 50 
Habersham 

County 
GA 8491 

Robeson 
County NC 8545 

Oneida 
County WI 8668 

Volusia 
County FL 50 
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